沈括还从计算田亩出发,考察了圆弓形中弧、弦和矢之间的关系,提出了我国数学史上第一个由弦和矢的长度求弧长的比较简单实用的近似公式,这就是“会圆术”。这一方法的创立,不仅促进了平面几何学的发展,而且在天文计算中也起了重要的作用,并为我国球面三角学的发展作出了重要贡献。
会圆术是对圆的弧矢关系给出的比较实用的近似公式,主要思想是局部以直代曲。沈括进一步应用《九章算术》中弧田的面积近似公式,求出弧长,这便是会圆术公式。沈括得出的虽是近似公式,但可以证明,当圆心角小于45°时,相对误差小于2%,所以该公式有较强的实用性。这是对刘徽割圆术以弦(正多边形的边)代替圆弧思想的一个重要佐证,很有理论意义。后来,郭守敬、王恂在历法计算中,就应用了会圆术。
此外,沈括还应用组合数学法计算,得出围棋可能的局数是3361种,并提出用数量级概念来表示大数3361的方法。沈括还在书中记载了一些运筹思想,如将暴涨的汴水引向古城废墟来抢救河堤的塌陷,以及用挖路成河、取土、运输,最后又将建筑垃圾填河成路的方法来修复皇宫等。沈括对数的本质的认识也很深刻,指出:“大凡物有定形,形有真数。”显然他否定了数的神秘性,而肯定了数与物的关系。他还指出:“然算术不患多学,见简即用,见繁即变,乃为通术也。”